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Many objects of modern technology (rockets, spaceships, airplanes, gyroscopic 
devices, centrifuges, etc. ) can be modelled in a number of cases by mechanical 
systems comprised of absolutely rigid bodies and material points and of deform- 
able (liquid and elastic) bodies connected with them. Mechanical systems con- 
taining among its parts both subsystems with a finite number of degrees of free- 

dom as well as units with distributed parameters, i. e. continuous media, are 
called complex systems for brevity. We consider the steady-state motions of 

complex systems. Stationary values of the potential energy V or of the altered 
potential energy FV of the system correspond to the steady-state motions. The 
stability problem for the steady-state motions leads to the investigation of the 

nature of the extremum of the potential energy V or W. The minimum of the 
potential energy corresponds to a stable motion. In a number of important cases 
the stability (instability) conditions can be obtained as conditions for the positive 

definiteness (for sign-alteration together with certain additional conditions) of 
the second variation baV or FW of the potential energy. These general results 

are applied to solving a number of concrete problems on the stability of the 

steady-state motions of complex systems. Stability conditions for the motion of 
a rigid body with liquid and elastic parts in various force fields are discussed. 

1, We consider complex systems subjected to holonomic constraints. The choice of 
the model for continuous media occurring as a part in a complex system is essential. 
To be specific we accept that a liquid body is to be modelled by incompressible homo- 
geneous ideal or viscous Newtonian liquids, while an elastic body, by rigid deformable 
bodies to be considered as material continua for which the deformation processes are 
reversible and for which the potential energy of deformation exists [l]. The motion of 
the complex system is considered relative to a certain inertial coordinate system 0’ Eq 5 
and it is assumed that under specified external forces it is uniquely determined by spe- 
cifying the initial conditions and is continuous in time, One of the rigid bodies of the 
system is taken as the base or supporting body and to it is attached a coordinate system 
OX~X~X, with origin at some point 0 of this body. The position of the system’s points 
in the space Etlc is determined by the generalized Lagrange coordinates qs (s = 1, 
. . ., n) of its subsystem with a finite number of degrees of freedom and by the radius- 
vectors r (XI, X2, Ss) from the origin at point 0 to the particles of the continuous 
medium. Then the velocities of the system’s points can be represented [Z] by certain 
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functions of Qs, qs’, r, r*. 
Without citation of the equations of motion of the complex system lJ2] in explicit form 

here, we restrict ourselves to an examination of its steady states (equilibria and station- 
ary motions) and of their stability. We assume, further, that the constraints imposed on 

the system are stationary, while the active forces operating are the position potential 

forces, the drivatives of the force function depending on the positions of the system’s points 
and, possibly, OR some parameter and not depending explicitly on time. Under these con- 

ditions there exists the system’s potentiai energy V which, in general case, depends both 
on the generalized coordinates qs as well as on the forms of the regions rt and rs OCCU- 

pied at a given instant by the liquid and elastic bodies,so that the potential energy of 
the system is a function and a functional simultaneo~ly. If the constraints imposed on 
the system admit of a rotation of the whole system as one rigid body around some fixed 
straight line 0’5, and if the forces acting on the system do not yield a moment relative 
to this line, then there exists an area integral & = k, where GL is the projection onto 
the 5 -axis of the system’s moment of momentum vector relative to point 0’ in its abso- 

lute motion. In this case we can introduce a functional of the altered potential energy 
I+’ g]. Here, among the real motions of the system there can be steady-state motions 
for which the position coordinates gS (S = 1, . . *, m; TTZ & n) and the coordinates 
Xi of the points of the continuo~ medium remain constant. 

‘Ihe coordinates qs and the configuration of the continuous medium, corresponding to 
the system’s steady state when the total beat infIux to the continuous medium is zero, 
are determined, in accordance with the principle of virtual displacements, from the con- 

where 6 denotes the change in the system’s virtual displacement, while the functional 

F equals V or W. Condition (1.1) is equivalent to the equations 

dFl’dq, = 0 (s zi,. . .( m) ($4 

and to functional equations together with natural boundary conditions. 
The potential energy of a complex system usually depends OR a certain parameter % 

which remains constant during any motion of the system. The constant area integral 

k -= ks serves as such a parameter for the functional W. The system’s steady states 
depend on the values of this parameter and, in general, will vary as it varies continuously. 
moreover, several states can correspond to one value of the parameter, In the configu- 
ration space complemented by a measurement of parameter h, these states are repre- 
sented by points of a real “equilibrium” curve consisting, in the general case, of several 
branches. The separate branches of this curve can intersect each other at bifurcation 
points. The equilibrium curves yield a global pauern of the distribution of the system’s 
steady states. The determination of the equilibrium positions of the complex system 
relative to some moving coordinate system O,ryz is carried out in the same way as 

for the absolute equilibrium positions under the condition that the energy forces of the 
transient motion are added to the potential energy. The investigation of the stability 

of the steady-state motions (equilibria and stationary motions) of complex systems has 
been successfully carried out by the methods originally developed [3. 43 for rigid and 
elastic bodies with a liquid filling. 

In the papers mentioned two definitions of stability are proposed. According to one 



Bifurcation and stability of steady-state motions 373 

of them, by the stable motion of a complex system we can understand Liapunov stability 
with respect to the variables qs (s = 1, . . . . k; k = n in the case of an equilibrium and 
k = m < n in the case of stationary motions), qi (i = I,..., n) and Pj (i = ly..., 01 
where the quantities Pi are certain integral characteristics of the motion of the con- 

tinuous medium and there are a finite number r of them lJ]. The actual choice of 
the quantities Pj depends on the problem being considered and should take into account 
the physical conditions. In the statement indicated the problem of the stability of the 

motion of a system with an infinite number of degrees of freedom reduces to the inves- 

tigation of the stability with respect to a finite number k + n + r of quantities Qst Pi y 
pj, i. e. is posed as a problem of stability with respect to a part of the variables (*). 

Under such a posing of the problem, Liapunov’s second method proves to be effective, 
however. not in its standard form but in a somewhat modified one. The thing is that 

when investigating stability with respect to not all the variables but to a part of them 
the classical theorems of Liapunov’s second method are not applicable directly since 

we cannot, as a rule, succeed in constructing Liapunov functions which depend only on 
the variables of interest to us. The application of the method to such problems is based 
on certain theorems on stability with respect to a part of the variables (see [3], Chapter 

3, Section 2). being modifications of Liapunov’s theorems. The expressions playing the 
role of Liapunov functions in the case of complex systems are functionals of the initial 
variables. Chetaev’s method [6] is effective for constructing them. The application of 
modifications of the theorems of Lagrange and Routh and of their generalizations is 
effective in the case of the steady-state motions. The given statement of the stability 

problem has turned out to be fruitful also in problems of stability of motion of a conti- 

nuous medium under a suitable choice of the integral characteristics of the medium’s 
motion. The other definition of the stability of the steady-state motions of complex 

systems is a synthesis of definitions of Liapunov stability with respect to the variables 
qs, qi’ and to the equilibrium forms of the units with distributed parameters. The char- 
acteristics of the deviationofthe perturbed form from the unperturbed one can be introduced 
differently by taking as such, as Liapunov had suggested, the “deviation” or else some 
other quantities, for example, the L 2-norms of the relative displacements 11 u )I [4]. We 
remark that stability with respect to the equilibrium form of the continuous medium 

refers, essentially, also to the class of problems on stability with respect to a part of the 
variables. 

According to the theorems proved for rigid and elastic bodies with a liquid filling 
and easily extendible to complex systems, the equilibrium (stationary motion) is stable 
if for it the functional F has a minimum F(O) and is unstable if for it F does not have 
a minimum and can take negative values in an arbitrarily small neighborhood of the 
steady-state motion, moreover, the signs of the expressions F - J’(O) = F(2) + 

F(3) + . . . and 2F@) + 3Fc3) i- . . . are determined by the secondorder terms F@) 
in the Taylor series expansion of the functional (and here gyroscopic stabiliaation is 
impossible). These results are intensified in the case when the dissipation occurs on 
every real motion of the system other than the steady-state motions 13, 41. We stress 

*) The opinion in [5] to the effect that the system being considered is by the same to- 
ken changed into a finite-dimensional system is erroneous ; as a matter of fact it remains 
as it is and is described by the original differential equations of motion. 
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that the presence (absence) of a minimum for F is to be interpreted as the positive de- 
finiteness (sign alteration) of the functional F - F(O). 

Under a continuous variation of the constant parameter h on which F depends, the 
steady states and the functional F vary continuously, and for all points of the equilibri- 
um curve for which F retains a minimum, the steady states remain stable. A change in 

stability on a specified branch of the equilibrium curve can take place only at a bifur- 
cation point where the equation PF = 2Fc2) = 0 has a nontrivial solution. The law 

for changes in stability for a fixed value of the parameter established by Poincark, also 
holds. We remark that here we have in mind an essentially constant parameter which 
remains constant on any motion of the system [7]. 

In ordinary cases the question of the nature of the extremum of functional F is set- 
tled by investigating its second variation @F whose form depends not only on the func- 
tional &’ itself but also on the choice of the functions characterizing the deviation of 

the perturbed form of the continuous medium from the unperturbed one and satisfying 
specified conditions. If the second variation @F is positive definite, then F has a mi- 

nimum, however, if PF can take negative values, then F does not have a minimum. 
The question of the nature of the extremum of functional F is settled by terms of high- 
er than second order only in the singular cases when PF is nonnegative; these cases 
are not considered further. 

Without loss of generality we assume that for the steady-state motion being examined 
the generalized coordinates Q~ = 0, so that in its neighborhood 6q, = qs. For com- 
plex systems the second variation of functional F consists of three parts 

a2F = F, (4) + Fz (4 + F, (q, n) 

Here F, (q) is a quadratic form in the generalized coordinates qs, coinciding with cY2F 
for a “hardened” system obtained from the original one by a hardening of the continu- 

ous media ; F2 (n) is a quadratic functional reflecting the change in the forms of the 
corresponding units of the system with distributed parameters, described by the vector- 

valued function n; F, (q, n) is a functional bilinear in the function n and in the co- 

ordinates qs, characterizing the mutual influence of a change in position of a subsystem 
with a finite number of degrees of freedom and of the deformation of its units with dis- 

tributed parameters. 
We mention two methods for establishing the conditions for the positive definiteness 

of a2F. One of them, developed in [8-lo], consists of the following. Suppose that the 

functionalF, (n) is positive definite. With the aid of the solution n* (q) of the equation 

6 [F’, (n) + F’, 03, ~)lQ=Collst: = 0 (1.3) 

the second variation 62F can be reduced to the form 

62F = F, (q) + Fit (n - n*) + l/$‘s (q, n* (q)) (1.4) 

where F, (q, n* (q)) is a quadratic form in the coordinates qs since the solution 

n* (q) of Eq. (1.3) is a linear function of qs. Thus, h2F represented as a sum of two 
independent parts and the conditions for its positive definiteness, consists of the condi- 
tions for the positive definiteness of functional F, and of the quadratic form 

u = J’, (4 + l/Z, (q, n* (4)) (1.5) 
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The fulfillment of the conditions for the positive definiteness of functional Pa ensures 

the stability of the “equilibrium” of the units with distributed parameters for QS = 0, 
while the conditions for the positive definiteness of quadratic form U can be interpreted 
as the conditions for the stability of an”equivalent” mechanical system consisting of 

rigid bodies and material points and having, generally speaking, a configuration other 
than that of a hardened system. 

In another method [11] for establishing the conditions for the positive definiteness of 
the second variation it is assumed that the quadratic form F, (q) is positive definite. 
With the aid of the solution q* (n) of the equation 

6 IF1 (Cl) + F, (Q, n)l,=,,*,t = 0 

the second variation can be reduced to the form 

PF = F, (q - q* (n)) + J’z (n) + ‘18, (q” (n), n) (1.6) 

where F3 (q* (n), TZ) is a quadratic form in the functional n. The conditions for the 
positive definiteness of (1.6) are made up from the conditions for the positive definite- 

ness of the quadratic form F, and of the quadratic functional 

@ (n) = Fz (n) + SF, (q* (n), n) 

The positive definiteness of F1 guarantees the stability of the subsystem with a finite 
number of degrees of freedom with units with distributed parameters, hardened in the 

steady state, while the positive definiteness of functional CD (n) guarantees the stability 
of a certain equivalent system consisting of units with distrihuted parameters and differ- 

ing generally speaking, from the original subsystem with distributed parameters. 

Both methods yield necessary and sufficient conditions for the positive definiteness of 
a2F. In these methods, by means of estimates of a different sort, we can obtain suffici- 
ent conditions for the positive definiteness of J2F, for example, those derived in [ii- 
131. It is not difficult to show that F3 (q, n* (q)) < 0 and F3 (q* (n), n) < 0. 
Therefore, the stability conditions for the equilibrium ot the equivalent system are worse 
than the analogous conditions for the hardened system or for the subsystem with distri- 
buted parameters. 

In this becomes apparent a common property of systems with deformable elements, 
being that deformability renders a destabilizing influence on the system’s equilibrium 
in comparison with the same configuration consisting of undeformable elements. For 
example, this property was repeatedly noted for rigid bodies with cavities containing a 
liquid. In certain practical problems the possibility occurs of changing the system’s 
mass distribution, for example, by spreading out its individual parts by considerable dis- 
tances. These changes promote the stabilization of the equilibrium of a system of rigid 

bodies, however, they usually intensify the deformability of the system’s elements, which 
can lead not only to a significant lowering of the expected effect of stabilization, but, 
in isolated cases, also to a destabilization of the system’s equilibrium. 

The problem of the positive definiteness conditions for functionals F2 (n) and CD (n) 
can be reduced to the problem of the positiveness of the smallest eigenvalue of the cor- 
responding boundary value problem. Numerical methods can be used to determine the 
coefficients of the quadratic form F3 (q, n* (q)) . Later on we consider a number of 
problems of the stability of the steady-state motions of concrete complex systems, being 
of specific independent interest. 
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2, Let us examine the motion around a fixed point 0 of a rigid body having a ca- 
vity partially filled with a liquid of density p, neglecting its surface tension. To the 
rigid body there is fixedly connected the axis of symmetry of a dynamically balanced 

rotor whose constant relative gyrostatic moment 8 is directed along the x:,-axis (with 
unit vector is) ; other rigid bodies and material points also are connected, their gene- 

ralized relative coordinates are q1 (S = 1, . . ., n). We assume that gravity forces as 

welias internal force5 with potential energy v (ql, . . . , 4%) act on the system. The 

altered potential energy of the system is 

w = $ (kg - Risy)2 + V (55, . . ., an) + Jfgcw, + "e2Yz -i. %ra) 

J = A?,' + Byzz + Qaz - 2hg, - 2~~~~~ - 2~~~~2 

Here Y (Yl? Y29 J$) is the unit vector along the axis 05 directly vertically upwards, 
Y is the system’s moment of inertia relative to the 5 -axis ; A, B, C, I.?, E, F are the 
moments and the products of inertia, xci are the coordinates of the system’s center of 

mass. Equations of form (1.2) admit of the solution 

if conditions 
rr = rz = 0, r3 :z 1, /& = fJ; 

5 Cl = XC% = 0, D=E=O 

are fulfilled for an arbitrary constant quantity w == (II_, - R)/ J D, i. e. if the system’s 
center of gravity is located on the z s-axis which is the principal inertia axis of the sys- 

tem, 

From a condition of form (1.1) we obtain the equation of the liquid’s ffee surface 

i/2”2 (Xi2 + “27 - gx:, = c (2.4) 

In the given case the quadratic form (1.6) is the following: 

U = [(CO - A”) w2 + No - Mgxc; - a] y12 + [(Co - E”) d + Rw - 

(2.2) 

Here, in the case of the intersection of surface (2. I) with the cavity’s walls along cir- 
cles of radii RI, Rz (R, > Rz > 0) and with centers on the X,-axis, 

For expression (2.2) to be positive definiteness it is necessary and sufficient to fulfil the 
Sylvester conditions 

(Co-- A") 02 $- Rw - Mgxcso - a > 0 (A” > R”) (2.3) 

Az+i>O (i~~~,.*.,n) 

where Az+i are the principal diagonal minors of the discriminant of quadratic form 
(2.2), corresponding to the variables qi (i == 1, . , ., n). Inequalities (2.3) are 
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sufficient conditions for the stability of the motion being considered. 
In the case of a viscous liquid and of the action of dissipative forces Qi such that 

Qlcl,’ + . . . -I- Q,q,’ < 0, where the equality sign holds only for qi’ = 0 (i = 1, 
. . .) n), when conditions (2.3) are fulfilled the system’s perturbed motion, sufficiently 

close to the unperturbed one, tends asymptotically to a uniform rotation around the ver- 

tical of the whole system, except the rotor, as one rigid body. When one or several of 
inequalities (2.3) change to the opposite sign, the unperturbed motion becomes unstable. 
The quantity a occurring in condition (2.3) is of order a2 as w + 00. Although the 
integrand contains CO to the fourth degree, R2 -+ R, as CO + 00 for any bounded 

cavity. 

The limit case o = 00 is of definite practical interest and permits us to describe 
comparatively simply the evolution of the stability conditions as the amount of liquid 
in the cavity varies. In this case the equation of the free surface (2.1) has the form 

xi2 + xi2 = Rrs = R,s = bs (2.4) 

If the cavity is bounded by the planes 5s = h * d, then the first of inequalities (2.3) 

can be written in the followinc manner : 

C”_AA”-22np52d?!$k?>0 

or 
C, -A, - V2a-cpdb4 > 0 

Here cr, A, are the moments of inertia of a fictitious rigid body obtained from the 

original hardened system by filling cylinder (2.4) formed by the liquid’s free surface 
The stability condition for such a rigid body has the form 

c, --A,>0 

and coincides with the stability condition for a rigid body with a cavity wholly filled 

with a liquid. Thus, in the end, the lessening of the 

x3 
I 

amount of liquid in the cavity of a rapidly rotating 
body worsens the stability, i. e. proves to have a 
destabilizing influence, although the difference 

I 

between the axial and the transverse moments of 
9 inertia of the system is increased here (as is easy 

to see, C, -A,< C” - A” for small r). 

-V-jil 
h 

I 
I--A, 

Fig. 1 

-_ 

3. The study of cavities of concrete form al- 
lows us to construct a complete pattern of the dis- 

tribution of the equilibrium positions of the com- 

‘J.1 
plex system and of their evolution and bifurcation as 
the system parameters vary. As an elementary ex- 

ample we consider the equilibrium of a heavy phy- 
sical pendulum with a spherical cavity partially 
filled with a liquid and with a horizontal axis of 
suspension (Fig. 1). The most interesting case is 

when the body’s center of gravity G and the cavi- 
ty’s center K lie in one plane with the swing axis 0 and are located on different sides 
of it (Fig. 1). In this case, as is not difficult to establish, the system has two equilibrium 
positions: q = 0 and q= n for any amount of liquid in the cavity. Here q is the 



angle between the z3 -axis and the vertical, Moreover,any position of the system can be 
considered an equilibrium position if Mh = ma. Here M, m are the mass of the body 

and the mass of the liquid, respectively, while the quantities a and h are geometric 
characteristics (Fig. 1). 

The pattern of the distribution of the equilibrium positions with the demarkation of 
the stable positions and their evolution under 

4) a change in the amount of liquid is shown in 

Fig. 2. For a small amount (m < m, = 
Mh / a) of liquid in the body’s cavity the 

C 7 ~~-~-*x-*-x-x-~-x-x- equilibrium position q = 0, at which the 

body’s center of gravity G is located below 
the swing axis 0 , is stable. For a sufficiently 
large amount (m > m,) of liquid the other 
equilibrium,~sition (( = TE, at which the 

Q -x-x-x-x-x-x+& cavity’s center fi is located below axis 0, 
ml m 

is stable, The change in stability on the 

Fig. 2 branches q = 0, q = n takes place at the 

bifurcation points when m = ml. 
The study of more complex cavities leads to more complicated bifurcation patterns. 

For example, a cavity in the form of a rectangular parallelepi~d was analyzed in [12]. 
The investigation of special cases in [12] has allowed us also to establish that the form 

of the cavity essentially determines the nature of the influence of the liquid’s surface 

tension, which was not taken into account in the examples presented, on the stability 

condition. 

4. Let us consider the problem of the stability of the uniform vertical rotation 
around a fixed point of a rigid body with a thin rectilinear nonextendible elastic rod 

rigidly fixed to it, in a uniform gravity force fieid. We introduce two rectangular coor- 
dinate systems with origin at a fixed point 0 of the body : an inertial one OEq 5, 
whose <-axis we direct vertically upward, and a moving system O~rxrxa, whose axes 
we direct along the principal inertia axes of the body for the point 0. Let ij be the 
unit vectors directed along the x1-axes (i = 1, 2, 3). We denote the unit vector of 

the 5 -axis by y and its projection onto the x, .-axes by yj. We assume that one end of 

a rod of length I is fastened to the body at a distance a from point 0 and, in its unde- 
formed state, is directed along the ss-axis, The x3x1- and x2x3-planes serve as its 

planes of symmetry. By 

u (t, S) = uril + u&, + & ogs,(t, t)t, 

we denote the vector of elastic displacement of the points of the rod’s axis. The con- 

dition that the rod is nonextendible leads to the relation 

Us’ =-y 1 (U/ + Uz’“) (u’==f3u/ds) 

while the condition that the rod’s end is fastened to the body leads to the boundary con- 

dition u1 = IAs = 0, u,’ = Gzf 5= 0 for s=O, t>tu 

The system’s altered potential energy is 
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J = Jlr,3 + J,r,’ f J3~33 + 0~ i { u,~T,’ f ~1~~33 + (~1~ + 7.~2~) ~3’~ - 

0 

[n(l -S) + ; (12 - S2)](U L2+ u2'2)(r12 +r22) - 2 (a + 4@hr,+ u,r,) r3- 

2w2Tlr2 ds 
\ 

II = Jfg(~lOrl+ ~2oT2 + 23OT3) + gqw1+ r2u2 - 

0 
1 

+r3 (I - 4 (C2 + u2'2) ds + f E s (12qU2 + r1u2"*) as ] 

" 

Here J is the system’s moment of inertia relative to the c-axis, n is the potential 
energy of the gravity forces and of the elastic deformation of the rod, Ji are the unde- 

formed system’s moments of inertia relative to the xi-axes, o is the area of the rod’s 
cross section, p is its density, M is the mass of the system, g is the gravitational ac- 
celeration, zio are the coordinates of the center of gravity of the system in its undefor- 

med state, E is the Young’s modulus, EI, and El3 are the flexural rigidities. 

When 3+s = zzo = 0, the equations of stationary motions of form (1.2) admit of a 
solution describing the uniform rotation of the rigid body with the rod undeformed around 

the vertical with an angular velocity o , 

y1=y2=o, y3=1, u,=uz=o (4.1) 

In the neighborhood of the unperturbed motion (4.1) we represent the expression for 

@I.$7 in the form (1.6) 

a2W = [(J:! - J1) 02- MgzQO] 
i 

rl + [ (J3 - J1) o2 - Mgz3ol-$ X 

i [g + w2 (a + s)] LL&~ + [(J, - J.2) o2 - ~~~gz,ol {r, --I- [(Js - J2) w2 - 
0 

1 

Here 

Mgz,,]-‘sp 5 [g i- o2 (a + s)] u&j2 + v (4.2) 

0 

v (Ul? 4) = 5p {E, (12zq2 s + I,u2”2) - g (I - s) (u1’2 + u,‘“) - 02 (u12 + U?‘)} x 
0 

I 

as - [(J, - Jd o2 - Mgz,,] {[(J, - J1) o2 - Mg1~~~]-‘q1~ [g + 02(a + s)] x 
0 

U,dS 
> 

‘- [(J, - 52) 02 - ,lfgz9,,] 
i 

[(J, - J2) 02 - Mgs,ol-‘sp X 

[ [g + 02 (a + s)] u2ds}a (E 7 6,,E*) 
(4.3) 

0 
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Let the conditions 
(Js - Ji) 02 - Mgs,, > 0 (i =1,2) (4.4) 

be satisfied, being sufficient stability conditions for the uniform vertical rotation (4.1) 
of the heavy rigid body with the rod undeformed (ur = us z 0). Then, using inequa- 
lities of the form 1 1 

i 5 1 
2 1 

sp Lg+ W2(a+s)~ uas G h3p s ~2s 
n 0 

where 

,h = op s [g + 02 (a + s)]” 0% = J*w4 + %G*92+mg2 
0 

m = alp is the rod’s mass, J, is the undeformed rod’s moment of inertia relative to 
point 0, and x3* is the coordinate along the rs-axis of the undeformed rod’s center 

of mass, from (4.3) we obtain the inequality 
1 

V(u,, UP))_ v* ia (hu1 c 
I2 + h2U2'2)+ {h, - cl+-- [(J, - J1)02- ~gGJ1 

I 
x 

b 

u12 + {h, - co2 - h [(Js - J,) o2 - Mgx,,]-‘} u2”} ds (4.5) 

Here a, and a, are the minima of the functionals 

ml (u) = {[(u’ + d2) dsj’ $ (E*ILun2 - g (1 - S) d2} dS 

0 

CD~(U) = {;(u2 + mz~~~)ds}-~ i {E,I,u”~- g (1 --)u’2}ds 

in the class of functions u (s), 0 < s < 1, continuously differentiable up to fourth 

order, satisfying the conditions u (0) = 0, u' (0) = 0 From (4.2) (4.4) and (4.5) 
it follows that the inequalities 

Ai > 0, hi - m2 > h [ (Jg - Ji) 0’ - Mgz,,]-’ > 0 (i = 1, 2) 

serve as the sufficient conditions for the positive definiteness of a2w and, consequently, 
are the sufficient stability conditions for the unperturbed motion (4.1). 

6. Let us consider the motion in a central Newtonian force field of a rigid body 
supporting on itself thin or thin-walled nonextendible elastic rods each of which has two 
planes of symmetry. We assume that three pairs of elastic rods of length C are fastened 

to the body at like distances a from the center of mass 0 of the rigid body and, in the 
undeformed state, are positioned along the principal central inertia axes of the body, 
moreover, the principal inertia planes serve as the symmetry planes of the rods. 

The problem of the stability of the relative equilibrium of such a system on a circu- 
lar orbit was investigated in [ 111 by means of representing the second variation 62w 
in the form (1.6). This problem is solved below by means of representing e2W in the 

form (1.4). Then for the quadratic form (1.5) we have 

u = r/sQ2 [(J, - J, - b,) fil” + 3 (J1 - Js - h.) Y12 + 

4 (J:! - J3 - bd 1’2~1 (5.1) 

where the quantities bi > 0 are computed from the solutions uii* of equations of 
type (1.3). Here Ji are the principal central moments of inertia of the rigid body with 



Bifurcation a1.d stability of steady-state motions 381 

the rods undeformed, m = alp is the mass of a rod, (5 is a rod’s cross-sectional area, 
p is the density of the rods. Q is the angular velocity of the motion along the orbit of 
the system’s center of mass. 

The conditions for positive definiteness of (5.1) have the form 

Jz - J, - 6, > 0, J, - J, - bz > 0, J2 - J, - b, > 0 

Numerical methods can be used to compute the constants bi . Sufficient stability con- 

ditions can be obtained also without the use of numerical methods if we make estimates 
of the functionals occurring in a2V. We can then show that the conditions 

Sk,4 < v%~, 1 - lj4 k,” > 0, 3k4, < vxc4 (1 - Ii4 k4,) (k: = pAW (El,)-‘) 

serve as the sufficient conditions for the positive definiteness of functional F2. Here 
EI, are the flexural rigidities of the rods (i = 1, 2, 3, ye = I.875 is the first 

root of the equation 1 + ch v cos v = 0; for simplicity of computation we assume 
that a = 0. The quantities bi can be replaced by 

blo = 2m12 L & 1 _y4k24 + gl Cd] , ho = 2m12 [ 1401~.k~3k3, + g2 (v2)] 
bsC = 2m12 

[ 
,cJ ,,,:,‘,:; 35) + $ g2 w] 

where bi < bi” (i = 1, 2, 3). Here 

g,(v) = g - 
sh 2~ - sin 2v 

g2w = 
chvsin v- sh vcnsv 1 

2v3 (2 + ch 2~ + cos 29 ' 
-- 

+(I+- ch v COY Y) 3 

v14 = 1/4 k14, vz4 = 3k 4 1, Van = 3kz4 !i (1 - I/4 k24) 

Let us consider in more detail the sufficient stability conditions for a rigid body with 

one pair of elastic rods having, in the relative equilibrium position, a direction tangent 
to the orbit. The sufficient stability conditions have the form 

3kP < Vet, AZ > As, A, - A, + ?/3 ml"il- 3g, (vl)] > 0 

’ 4 -43 
I A, - AS - 3/3 ml2 [I i- 3g, (%,)I > 0 

I 

I 
I 

I 
I 

i 

Here Ai are the principal central moments 

of inertia of the rigid body. In particular, 
for circular rods with cross-sectional radius 
r the stability region in the plane of the 
parameters A1 - A, and r is indicated 

on Fig. 3. The value r* corresponds to the 

value v2= v*, i. e. to that value of the 
/ parameter for which the loss of stability of 

the rectilinear form of the rod takes place. 

f* r** r Calculations show that when all the remain- 

Fig. 3 
ing paramaters of the rod are fixed and 
for a fixed angular velocity B of orbital 

motion there exists an optimal rod radius r ** for which the stability region is the lar- 
gest. For r > r** the stability region contracts because of the increase of rod mass 
(m = pn”l), while for r < r** it contracts because of the increase of rod deformability 
since v-+ v* and g(v) + 30 as r--‘r*. 



382 V.M.MO~OZOV, V.N.Rubanovskil, V.V.Rumiantsev and V.A.Samsonov 

BIBLIOGRAPHY 

1. Sedov, L. I., Mechanics of a Continuous Medium. Moscow, “Nat&a”, 1970. 
(See also Sedov, L. I., Foundations of the Nonlinear Mechanics of Continua. 

Pergamon Press Ltd., Book WO9878). 
2. Rumiantsev, V. V., Certain problems in the dynamics of complex systems. 

In: Problems of Applied Nathematics and Mechanics. Moscow, “Nauka”.1971. 
3. Moiseev, N. N. and Rumiantsev, V. V., Dynamics of a Body with Cavi- 

ties Containing Liquid. Moscow, “Nat&a”, 1965. 
4. Rumiantsev, V. V., On the motion and stability of an elastic body with a 

cavity containing liquid. PMM Vol. 33, W6, 1969. 
5. Meirovitch, L., Reply by Author to V. V. Rumiantsev. AIAA Journal, Vol. 9, 

W9, 1971. 

6. Chetaev, N. G., The Stability of Motion. Pergamon Press Ltd., Book NoO9505, 
1961. 

7. Rumiantsev, V. V., On the stability of steady motions. PMM Vol. 30, Ng5.1966. 
8. Pozharitskii, G, K., The minimum problem of the stability of the equilibri- 

um of a solid body partially filled with liquid. PMM Vol. 26, W4. 1962. 
9. Pozharitskii, G. K. and Rumiantsev, V. V., The problem ofthe mini- 

mum in the question of stability of motion of a solid body with a liquid-filled 

cavity. PMM Vol.27, NQl, 1963. 
10. Samsonov, V. A., On the problem of the minimum of a functional in the 

investigation of the stability of motion of a body containing fluid. PMM Vol. 

31, Np3, 1967. 
11. Rubanovskii, V. N., On the stability of certain motions of a rigid body with 

elastic rods and liquid. PMM Vol. 36, Ngl, 1972. 
12. Samsonov, V. A., Stability and bifurcation of equilibrium of a body with 

liquid. Nauchn. Tr. Inst. Mekhaniki MGU, W16, 1971. 

13. Morozov, V. M. and Rubanovskii, V. N. , Stability of relative equilib- 

rium on a circular orbit of a rigid body with elastic rods. Izv. Akad. Nauk SSSR, 

MTT, Ng5, 1973. 

Translated by N. H. C. 


